If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+19x-480=0
a = 1; b = 19; c = -480;
Δ = b2-4ac
Δ = 192-4·1·(-480)
Δ = 2281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{2281}}{2*1}=\frac{-19-\sqrt{2281}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{2281}}{2*1}=\frac{-19+\sqrt{2281}}{2} $
| F(x)=2800(0.91)x | | 0.4x+9.8=9.2 | | 49y^2+11=0 | | 24x+42÷6+48x÷4=(7)(7) | | t=(3.14(8)(3)^2)/45 | | 2(2x+3)-7x=23-5(x=3x) | | 3d(d-3)+5(d+7)-d(d+1)-2d(d-3)+4=0 | | 2(17-5y)+5y=9 | | (a-9)(2a-+1)=0 | | 4x=-20x² | | v^2=361 | | x+1/5+x+2/3=3/5 | | 6(x-9)=4(2x-15) | | 6(x-9)=4(2x-15 | | 3(x-5)-7=17 | | 4-3x/7+2-x/3=40/21 | | 2x-3/5-x+2/3=10 | | 2x-3/5-x+2=10 | | -3p=-5p+22 | | 5(p-2)+(p-3)=2(2p+1)-9 | | A=(6x+10)(8x-3) | | 1/4=3x | | 9(t+14)=27 | | 7q=40-13q | | 10x-28=6-7x | | x+-3(2x+5)=6 | | F(x)=2x/x-2 | | 7p+13=33–4p | | 2c-(4-4c)=3(7-2c)-15 | | 2k+4=-20 | | -6(3x-8)=36 | | 2y+21=57 |